http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-110874598-B

Outgoing Links

Predicate Object
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F18-23213
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06V10-44
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F18-214
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06V10-762
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06V10-774
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06V10-44
filingDate 2019-11-05^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2022-09-27^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2022-09-27^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-110874598-B
titleOfInvention A deep learning-based method for detecting water marks on expressways
abstract The invention discloses a method for detecting highway water marks based on deep learning. 3: Semantically segment the data set obtained in step 1; Step 4: fuse the segmentation results obtained in steps 3 and 4 to obtain the required highway water mark detection results; the deep learning method of the present invention combines the semantic The combination of segmentation and self-adaptive clustering segmentation can perform high-efficiency and high-precision detection of highway water marks, and can achieve good application results in highway water mark detection.
priorityDate 2019-11-05^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-108805882-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2008230512-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962

Showing number of triples: 1 to 18 of 18.