Predicate |
Object |
assignee |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_85b628841ebd80eeae742a418ab2d469 |
classificationCPCInventive |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C22C18-00 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-84 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C22F1-165 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N23-2251 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N23-2206 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N23-20091 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C22C1-02 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N1-32 |
classificationIPCInventive |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N23-2206 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N23-20091 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C22F1-16 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N23-2251 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C22C1-02 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C22C18-00 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N1-32 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-84 |
filingDate |
2019-12-18^^<http://www.w3.org/2001/XMLSchema#date> |
inventor |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0363ae0d8232abf942f560df9784fc8c http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_845fa40b27d584a4da46d89e940f3eb9 http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_fae7a77ac06bd75ab2d17cbe760d6846 http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4a15bd0d095cc07b78718759a936d4ff http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_5cbc672a26c85d618d1f0364c21204af http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_bc451f5f6c57712c2dec9a96436a4081 http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3258021d9b750981447cda996ffda857 |
publicationDate |
2020-04-21^^<http://www.w3.org/2001/XMLSchema#date> |
publicationNumber |
CN-111044544-A |
titleOfInvention |
In-situ quantitative detection method and application of multi-component intermetallic compound diffusion growth |
abstract |
The invention relates to an in-situ quantitative detection method and application for the diffusion growth of multi-element intermetallic compounds. The τ-phase alloy is prepared by mixing the metal raw materials of the τ-phase alloy; the τ-phase alloy and the Mg-phase are cut and then annealed at high temperature; the τ-phase alloy and the Mg-phase are prepared to obtain a diffusion couple, and the contact surface is polished before the preparation of the diffusion couple; the prepared The annealed diffusion couple was placed in a tube furnace for annealing to obtain an intermetallic compound layer; the annealed diffusion couple was identified by SEM‑EDS and further observed in situ. Using the method of the present invention, the in-situ growth behavior of the multi-component intermetallic compound can be quantitatively and accurately analyzed. |
isCitedBy |
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113000085-B http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-112185488-A http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-112185488-B http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2022178943-A1 http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113000085-A |
priorityDate |
2019-12-18^^<http://www.w3.org/2001/XMLSchema#date> |
type |
http://data.epo.org/linked-data/def/patent/Publication |