http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-111763841-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_edba331323cc8ac15a87318e17019827
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B22F9-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B22F9-023
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B22F3-1017
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C22C1-0458
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B22F3-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C22C14-00
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B22F3-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B22F9-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C22C1-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C22C14-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B22F9-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B22F3-10
filingDate 2020-05-21^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8e7aa615ff77bdb2a4e66501dc4f3396
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4e097863e62a5bd2688d91da047bcf07
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0eff1b05c798568cc2e4bf6167b860ae
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_73765d8b1e61324922efa6f3fe94557c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_19c080b1bc2b914ab62a3d7a2cb823f2
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_528f5348856ed79e2e433ac73b00100c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_95bcfe511b97290893bcbc32ee26b18e
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_48ca87d7d05599180642ffd2d5a31aef
publicationDate 2020-10-13^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-111763841-A
titleOfInvention Powder metallurgy titanium or titanium alloy product and method for preparing the same in short process
abstract The invention provides a powder metallurgy titanium or titanium alloy product and a short-flow preparation method thereof. The preparation method includes the following steps: selecting titanium or titanium alloy as a raw material, and the size of at least one dimension of the raw material is ≤5 mm; The raw material is subjected to unsaturated hydrogenation treatment; the raw material after the unsaturated hydrogenation treatment is subjected to low-temperature crushing treatment to obtain unsaturated titanium hydride powder; the unsaturated titanium hydride powder is sequentially formed and sintered to obtain titanium or titanium hydride alloy products. The preparation method utilizes the brittleness of the material after partial hydrogen absorption and combines the low-temperature crushing technology to crush the material into powder, and then directly cold isostatic pressing of the powder and vacuum sintering densification to prepare titanium and titanium alloy materials, omitting the dehydrogenation process, realizing The powder titanium alloy product is prepared in a short process, with high yield, low cost and excellent product performance.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114672682-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114293047-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-115502399-A
priorityDate 2020-05-21^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-H03122205-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451624195
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23963
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458357694
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23968
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559477
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID783
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID187779
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425193155

Showing number of triples: 1 to 40 of 40.