http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-112149000-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_d40285e27f4ed83b8728b0d477404958
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F16-9536
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06Q50-01
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F18-23
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F16-9536
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06Q50-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06K9-62
filingDate 2020-09-09^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_5b1d4870d8a80120b63dd99d0cc8f868
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7611d59a03ce1f49631a0e2353095cf5
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_091c839f1b454435eb5e7a9b096a776d
publicationDate 2020-12-29^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-112149000-A
titleOfInvention An online social network user community discovery method based on network embedding and node similarity
abstract An online social network user community discovery method based on network embedding and node similarity, using the network embedding method to convert high-dimensional social network into low-dimensional vector data, calculating the distance between user nodes and the dynamic neighbor gravitational sum of each node. Dynamic neighbor gravitational centrality, and then determine the central node of each initial small community, and then attribute the remaining data points to the small community represented by the initial central node closest to it to generate the initial small community set of social network users; calculate the sum of all nodes. The distance between each node is obtained, the most similar node of each node is obtained, and the most similar node pair is formed, and then the initial small community is merged according to the most similar node pair to obtain the secondary community; finally, the secondary community is merged by optimizing the modularity method and found The optimal network community structure. The present invention uses the network embedding vector to calculate the distance between nodes, utilizes the most similar node pair to merge the community, and has high speed and high accuracy.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-112929445-B
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-112929445-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-112910680-A
priorityDate 2020-09-09^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2017011091-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID43672
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419535645

Showing number of triples: 1 to 23 of 23.