http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114037163-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_47d0c46a02d59ba47699c84801c25a1f
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02A20-152
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06N3-084
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06Q10-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06Q50-26
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F18-23
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06N3-006
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06Q50-26
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06N3-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06K9-62
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06N3-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06Q10-04
filingDate 2021-11-10^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_fb0f9cee8f68dd7e5e1250dd3a34d0a0
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_927d95a1ea03aa29ed5f90e28045e2c3
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8d110a1dd2ba9bfacf319f6b1e463cf8
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_6cf19aa9c2f4039d32eb67ef74e33762
publicationDate 2022-02-11^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-114037163-A
titleOfInvention An early warning method of wastewater treatment effluent quality based on dynamic weight PSO optimization BP neural network
abstract The invention discloses an early warning method for sewage treatment effluent quality based on dynamic weight PSO particle swarm algorithm optimization of BP neural network. The method is realized based on the following steps: 1) On the basis of analyzing the A2O sewage treatment process, through correlation analysis Determine six key indicators such as influent flow, influent total nitrogen, influent COD, dissolved oxygen concentration, redox potential ORP, and influent PH value as the input variables of the effluent total nitrogen and effluent COD prediction model, and predict the data. 2) Establish a sewage treatment effluent quality prediction model based on dynamic weight PSO optimized BP neural network, and verify the accuracy of the model; 3) Using the established model, input the data set of 6 key indicators, The total nitrogen in the effluent and the COD in the effluent are predicted, and the corresponding early warning is given by analyzing the prediction results. The invention has a reasonable design, not only solves the problems of complex and redundant structure and easy to fall into local extreme values when the traditional BP neural network predicts the effluent quality, but also improves the prediction accuracy of the effluent quality to a large extent. The quality of the effluent has been pre-warned, which can achieve the effect of predicting and responding in advance.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114202065-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-115240060-A
priorityDate 2021-11-10^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID977
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419556970
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6857397
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID947
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448315045
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523291

Showing number of triples: 1 to 33 of 33.