http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114621358-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_0480b04257d8c8e0eedf89a3143f468f
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08B11-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08B11-193
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08B11-145
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08B11-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08B11-22
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08B11-08
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C08B11-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C08B11-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C08B11-145
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C08B11-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C08B11-193
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C08B11-22
filingDate 2022-04-14^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b0be66e18bfb3e88bcaff7d3531e6d62
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_dd453b561478890400ccf784abbbde46
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8b2ff1ed205cd39581a850ed4c233147
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_c0ec6137de9775cddf231a202a551fa2
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_53bd5efba08aa55884028a60141d7dc2
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a09faada9107b33287191cda0fa99e79
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_19a1f76ad114ace2af5897c22f6b74a7
publicationDate 2022-06-14^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-114621358-A
titleOfInvention Method for preparing cellulose ether with low crystallinity and high degree of substitution by one-pot method
abstract The invention provides a method for preparing cellulose ether with low crystallinity and high degree of substitution by adopting a one-pot method. The reaction is carried out with an etherifying agent, and after the reaction is completed, solid-liquid separation is performed, and the solid is washed and desalted to obtain cellulose ether with low crystallinity and high degree of substitution, and the yield is 85-95% of the cellulose raw material. The pulp concentration of the cellulose raw material in the molten salt hydrate is 1-20wt%, and the consumption of the alkali is 3-10wt% of the cellulose raw material. The amount of the etherifying agent is 1.5-20 times the weight of the cellulose raw material; the molten salt hydrate is a binary composite molten salt hydrate. The preparation method greatly reduces the dosage of alkali metal hydroxide, reduces the cost of recovery of alkali metal hydroxide, and avoids severe degradation of cellulose in a concentrated alkali environment, thereby improving the degree of substitution of cellulose ether. And yield, solve the technical problems in actual production, the market value is huge.
priorityDate 2022-04-14^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2011028783-A2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113402485-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2009047023-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2007112185-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559212
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6327
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450848260
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419520784
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5360315
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419474137
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3007855
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449957047
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419591227
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID943
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID18205
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3283
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23665649
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426260513
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID408599808
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447612385
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458394834
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID9322
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559517
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559261
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452899714
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7503
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID259
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450648134
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID300
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5284359
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6378
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24846132
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10239
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451906529
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419579080
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID416604284
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419526336
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID312
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426260387
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419485929
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID84927
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID411583174
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419547105
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453213080
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23672308
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24375
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID123351
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6337
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID82050
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24832091
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419522000

Showing number of triples: 1 to 78 of 78.