Predicate |
Object |
assignee |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_e2b5005b473b73e158899328dd7e6331 |
classificationCPCAdditional |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F2111-04 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F2119-14 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E30-30 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F2113-08 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F2111-10 |
classificationCPCInventive |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F30-23 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F30-27 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F30-28 |
classificationIPCAdditional |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F111-10 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F111-04 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F113-08 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F119-14 |
classificationIPCInventive |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F30-28 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F30-23 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F30-27 |
filingDate |
2022-05-31^^<http://www.w3.org/2001/XMLSchema#date> |
inventor |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_504bb5a4e6c982d3fa8b3f095d2c400b http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_25882fbf815130e177e88204f96d1a0e http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e1e188c77f1bf316db1028ee620391ed http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_341f3b8fe70510c7d82d45e9bf4964d3 http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_90565156f43c3b03f077ff4ac21dff9b http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_13a0a04509904537d75d3f56d41a2707 |
publicationDate |
2022-09-02^^<http://www.w3.org/2001/XMLSchema#date> |
publicationNumber |
CN-114997081-A |
titleOfInvention |
A digital reactor simulation analysis method for flow-induced vibration of large pressurized water reactor core structure |
abstract |
The invention discloses a digital reactor simulation analysis method for flow-induced vibration of a large-scale pressurized water reactor core structure. The method includes the following steps: S1: respectively use the flow in the lower head of the reactor pressure vessel, the core and the fuel assembly. Field as the object, perform data-driven analysis and simulation of the flow characteristics and fluid mechanics of the flow field in the reactor; S2: According to the results of the analysis and simulation output in step S1, establish the fuel rods at the element level, the fuel assemblies at the assembly level and the full core fuel. Structural dynamics model of the finite element discrete equation of the component under the action of fluid excitation, analyze the governing equation solving strategy of multiple nonlinear factors and multiple spatiotemporal scale coupling of the core structure; S3: solve the mechanical behavior of the core structure according to the governing equation, and solve the problem Sensitivity analysis and uncertainty quantification are carried out on the input-output sample data of the core structure to complete the analysis of the flow-induced vibration behavior of the core structure at multiple spatiotemporal scales. |
isCitedBy |
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-115577583-A http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-115577583-B |
priorityDate |
2022-05-31^^<http://www.w3.org/2001/XMLSchema#date> |
type |
http://data.epo.org/linked-data/def/patent/Publication |