abstract |
Disclosed is a method for forming glass articles containing internal enclosed channels comprising the following steps: (a) delivering and depositing a first or channel-forming ribbon of molten glass to a surface of a mold assembly having a mold cavity possessing at least one channel-forming groove formed therewithin and a peripheral surface, wherein the channel-forming ribbon overlies the mold cavity and the peripheral surface of the mold assembly; (b) allowing the channel-forming ribbon of molten glass to substantially conform to the contour of the mold cavity resulting in the formation of at least one channel in the ribbon of the molten glass; (c) delivering and depositing a second or sealing ribbon of molten glass to the outer surface of the channel-forming ribbon of molten glass wherein the viscosity of the sealing ribbon is such that the sealing ribbon (i) bridges but does not sag into complete contact with the surfaces of at least one channel of the channel-forming ribbon and (ii) forms a hermetic seal wherever the sealing ribbon contacts the channel-forming ribbon to form a glass article possessing at least one enclosed channel; and, (d) removing the glass article from the mold. n This method has enabled the production of lightweight, sealant-free, thin glass envelopes having a front surface and back surface laminated and integrated together, i.e., a unitary envelope body having at least one discharge or ionizable gas channel. Specifically, glass envelopes can be produced which exhibit a weight to area ratio of ≦ 1.0 g/cm 2 . Lightweight, internally channeled light-emitting devices can be formed from these thin glass envelopes; in this application electrodes are attached to the envelope, at opposite ends of, and in communication with, the gas channel and the channel contains a discharge or ionizable gas. |