http://rdf.ncbi.nlm.nih.gov/pubchem/patent/GB-2594588-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_eda37409f26cb8e833ba67f2b1bc1fd5
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F05D2240-307
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F05D2270-808
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F05D2260-81
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01B21-32
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01D17-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01M7-025
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01M5-0041
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01M7-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01D5-14
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01B11-16
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01M5-0016
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01H1-003
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01M5-0066
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01B21-32
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01M7-02
filingDate 2020-03-23^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_19ddbce7ab5c47f2d66626b23841934d
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_25e037e439520c8f47df15001393ab40
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_184bf25ad2dcaa4635bccdc47462b6c7
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_6f4cdc1075a08dc9be4ec797e756ef58
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_60c812107ac0cafa398c175fde6f4b32
publicationDate 2021-11-03^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber GB-2594588-A
titleOfInvention Measurement method for rotor blade dynamic strain field based on blade tip timing and system thereof
abstract Disclosed are a measurement method for rotor blade (4) dynamic strain field based on blade tip timing and a system thereof. The method comprises the following steps: establishing a three-dimensional finite element model of the rotor blade (4) to be measured, and extracting modal parameters of the three-dimensional finite element model (S1); determining the number and circumferential installation positions of blade tip timing sensors (1) (S2); establishing a mapping relationship between blade single-point displacement and full-field dynamic strain (S3); obtaining blade tip single-point displacement of the rotor blade (4) based on the blade tip timing sensor (1) (S4); and obtaining the dynamic strain measurement of the rotor blade (4) at arbitrary position and in arbitrary direction according to the single-point displacement based on the mapping relationship (S5). The method only uses finite measure points of the blade tip to realize the reconstruction of the overall dynamic strain field of the rotor blade (4), and can achieve the measurement of the normal strain and the shear strain of all the nodes on the surface and in the interior of the rotor blade (4) under multi-modal vibration. The calculation process is simple, and online measurement can be easily carried out.
priorityDate 2019-03-22^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5352426
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419524915

Showing number of triples: 1 to 30 of 30.