http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2013536392-A

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J2270-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J2245-90
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J2215-14
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J2215-62
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J2215-32
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J2290-62
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J2290-34
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J1-0254
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J1-0202
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J1-002
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J5-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J1-0035
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J1-004
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J1-0037
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J1-0015
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J1-0012
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J1-0027
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J1-0022
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J3-04393
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J1-0234
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J1-0017
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J1-0288
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J1-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J1-0007
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J1-001
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J3-04357
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J1-0005
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F25J3-04224
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F25J1-00
filingDate 2010-07-28^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2013-09-19^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber JP-2013536392-A
titleOfInvention Integrated liquid reservoir
abstract A gas liquefaction device and a liquefaction step, wherein the feed stream is fed to a liquefaction device having at least a warm expander and a cold expander, and the feed stream is at a pressure higher than the critical pressure of the feed stream Cooling the pressurized feed stream to a temperature below the critical temperature of the feed stream to form a high pressure dense phase stream, and moving the high pressure dense phase stream from the liquefaction device to produce a hybrid two-phase Lowering the pressure of the high pressure dense phase flow in the expansion device to form a flow, then feeding the mixed two phase flow directly to the storage tank and forming the mixed flow of steam to produce a mixed two phase flow A liquefying device and a liquefaction step, wherein the temperature of the high pressure dense phase flow is lower than the temperature of the discharge flow of the cold expander.
priorityDate 2010-07-28^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-H0763474-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-H0952014-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5802874-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID947
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419556970

Showing number of triples: 1 to 41 of 41.