http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-6687144-B1

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01P2050-22
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01P2007-146
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01P2060-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01P2031-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01P2025-32
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01P2003-021
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01P2023-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F02D2200-021
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01P2025-66
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01P11-16
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01P3-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01P7-167
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01P3-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01P7-165
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01P5-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01P7-14
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01P5-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01P7-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F02D41-1405
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F02D41-22
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F02D45-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F01P11-16
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F02M26-33
filingDate 2019-03-19^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2020-04-22^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2020-04-22^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber JP-6687144-B1
titleOfInvention Abnormality detection device for engine cooling water circulation system
abstract PROBLEM TO BE SOLVED: To accurately detect an abnormality of an engine cooling water circulation system. SOLUTION: In order to estimate the engine cooling water temperature, it is determined whether or not a grill shutter (50) is in an open state, and the blower air of a blower (63) flows through an air conditioning heater (65). Four learned neural networks (150A, 150B, 150C, 150D) in which weights have been learned are stored for each of the four states, that is, the state and the state. The engine cooling water temperature is estimated by using one learned neural network selected from these four learned neural networks (150A, 150B, 150C, 150D), and the engine cooling water temperature is estimated based on the estimated engine cooling water temperature. An abnormality in the cooling water circulation system is detected. [Selection diagram] Fig. 21
priorityDate 2019-03-19^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635

Showing number of triples: 1 to 33 of 33.