http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10006810-B2

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_fd446fb0d73aa96d044fea2eaa3c8ebc
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01J2005-066
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01J2005-067
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01J5-068
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01J5-0808
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01J5-24
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01J5-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01J5-0809
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01J5-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01J5-0853
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01J5-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01J5-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01J5-24
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01J5-06
filingDate 2015-10-09^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2018-06-26^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_642898c07236a962a1ff17251c528965
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d6a749498e49d757d523d6216a4d4d86
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b4db7411e5a0eed715a483e5f52e265c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_69e8bbe11894ceb709e7534b95807479
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2b8f4b3225125f2cfa936eb24b174ccf
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0d743559d525e2b4a02caabfabc2e0c3
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_dbda43f4b0fb77f16dccea87f8d39b0e
publicationDate 2018-06-26^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-10006810-B2
titleOfInvention Method to modulate the sensitivity of a bolometer via negative interference
abstract A semiconductor sensor system, in particular a bolometer, includes a substrate, an electrode supported by the substrate, an absorber spaced apart from the substrate, a voltage source, and a current source. The electrode can include a mirror, or the system may include a mirror separate from the electrode. Radiation absorption efficiency of the absorber is based on a minimum gap distance between the absorber and mirror. The current source applies a DC current across the absorber structure to produce a signal indicative of radiation absorbed by the absorber structure. The voltage source powers the electrode to produce a modulated electrostatic field acting on the absorber to modulate the minimum gap distance. The electrostatic field includes a DC component to adjust the absorption efficiency, and an AC component that cyclically drives the absorber to negatively interfere with noise in the signal.
priorityDate 2014-10-10^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2009538425-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-7378655-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-7968846-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2011057107-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID82849
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419578887

Showing number of triples: 1 to 35 of 35.