Predicate |
Object |
assignee |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_4008e4a2500d9673afd2464a1915a70b |
classificationCPCAdditional |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H04M1-0283 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H04M1-185 |
classificationCPCInventive |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25D7-00 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25D11-246 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25D13-12 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25D11-22 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F1-1613 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F1-1656 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25D9-02 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25D11-20 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F1-203 |
classificationIPCAdditional |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H04M1-18 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H04M1-02 |
classificationIPCInventive |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25D7-00 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25D13-12 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25D9-02 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F1-16 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F1-20 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25D11-20 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25D11-24 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25D11-22 |
filingDate |
2015-12-16^^<http://www.w3.org/2001/XMLSchema#date> |
grantDate |
2020-07-14^^<http://www.w3.org/2001/XMLSchema#date> |
inventor |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_66cef3cb8b088c5fe0caacf93a4082b5 http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_31fc081a61b007ec6407396bc96c974b http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_666ac506353371ae98de8acb94b88943 |
publicationDate |
2020-07-14^^<http://www.w3.org/2001/XMLSchema#date> |
publicationNumber |
US-10711363-B2 |
titleOfInvention |
Anodic oxide based composite coatings of augmented thermal expansivity to eliminate thermally induced crazing |
abstract |
A process is disclosed for minimizing the difference in thermal expansivity between a porous anodic oxide coating and its corresponding substrate metal, so as to allow heat treatments or high temperature exposure of the anodic oxide without thermally induced crazing. A second phase of higher thermal expansivity than that of the oxide material is incorporated into the pores of the oxide in sufficient quantity to raise the coating's thermal expansion coefficient. The difference in thermal expansion between the anodic oxide coating and underlying metal substrate is reduced to a level such that thermal exposure is insufficient for any cracking to result. The second phase may be an electrodeposited metal, or an electrophoretically deposited polymer. The second phase may be uniformly deposited to a certain depth, or may be deposited at varying amounts among the pores. |
priorityDate |
2015-09-24^^<http://www.w3.org/2001/XMLSchema#date> |
type |
http://data.epo.org/linked-data/def/patent/Publication |