Predicate |
Object |
assignee |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_a12aa2f59a6357d29e7b05c3f77ca7be http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_eb6cfa1b089e0646d61e7ac54dc482b0 |
classificationCPCAdditional |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-13 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02T10-70 |
classificationCPCInventive |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01G11-70 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01G11-86 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01G11-02 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01G11-24 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01G11-28 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01G11-32 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01G11-36 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01G11-46 |
classificationIPCInventive |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01G11-86 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01G11-02 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01G11-32 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01G11-36 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01G11-24 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01G11-28 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01G11-46 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01G11-70 |
filingDate |
2017-07-14^^<http://www.w3.org/2001/XMLSchema#date> |
grantDate |
2021-09-14^^<http://www.w3.org/2001/XMLSchema#date> |
inventor |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_dd2516c07be7d6fc79260cc453015539 http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0eb39fb7a9a5174c6d6230bf7269cc32 |
publicationDate |
2021-09-14^^<http://www.w3.org/2001/XMLSchema#date> |
publicationNumber |
US-11120952-B2 |
titleOfInvention |
Supercapacitor having a high volumetric energy density |
abstract |
A process for producing a supercapacitor cell, comprising (a) Assembling a porous cell framework composed of a first conductive foam structure, a second conductive foam structure, and a porous separator, wherein the first and/or second conductive foam structure has a thickness no less than 200 μm and at least 80% by volume of pores; (b) Preparing a first suspension of an anode active material dispersed in a liquid electrolyte and a second suspension of a cathode active material (e.g. graphene sheets) dispersed in a liquid electrolyte; and (c) Injecting the first suspension into pores of the first conductive foam structure to form an anode and injecting second suspension into pores of the second conductive foam structure to form a cathode, wherein the anode active material or the cathode active material constitutes an electrode active material loading >10 mg/cm2, preferably >15 mg/cm2, more preferably >20 mg/cm2. |
priorityDate |
2015-08-24^^<http://www.w3.org/2001/XMLSchema#date> |
type |
http://data.epo.org/linked-data/def/patent/Publication |