abstract |
Techniques are described for additive manufacturing, e.g., 3D printing, stretchable tactile sensors. As described, the techniques may allow the stretchable tactile sensors to be 3D printed under ambient conditions via nanocomposite inks. In various embodiments, sinter-free inks are described with adjustable viscosities and electrical conductivities. Moreover, conductive compositions are described in which micron or submicron-sized silver particles are dispersed in a highly stretchable silicone elastomer. Techniques are described herein in which the inks are used 3D printing process to form tactile sensing platforms and integrated arrays. |