abstract |
Apparatus and methods according to the present invention preferably utilize electroosmotic pumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These electroosmotic pumps are preferably fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These electroosmotic pumps also preferably allow for control including venting or recapture of evolved gases and deposited materials, which may provide for long-term closed-loop operation. A gas permeable membrane removes and vents electrolytic gasses generated within the fluid chamber of the electroosmotic pump to ambient. A catalyst can be used to recombine electrolytic gases to form a vapor product that can be vented or condensed into a liquid state. An osmotic membrane provides for re-entry of condensed fluid to the fluid chamber. |