abstract |
The invention provides novel dental enamel inspired materials for biomedical and dental applications. The materials are apatite-like calcium phosphate complexes and may comprise apatite, octacalcium phosphate crystals, or mixtures thereof. In one embodiment, the materials (calcium phosphate coatings) are mixtures of crystals of apatite and its precursor, octacalcium phosphate, nucleated on a titanium surface. They are prepared using a chemical process leading to the formation of biological apatite which is similar to that found in natural bone and teeth. In one embodiment, the materials are prepared by placing a titanium substrate in a supersaturated calcifying solution containing native or purified recombinant amelogenins. The presence of the amelogenins modulates apatite crystal growth to mimic in vivo apatite crystal formation. Applications for the materials include, without limitation, dental tissue (enamel, dentin, cementum) replacement, orthopeadic implants for bone repair, and coatings for improving the biocompatibility and bone regeneration capability of currently available implants or medical devices made of metallic, polymeric, ceramic or composite materials. |