abstract |
A computer-implemented method of recognizing dental information associated with a dental model of dentition includes training a deep neural network to map a plurality of training dental models representing at least a portion of each one of a plurality of patients' dentitions to a probability vector including probability of the at least a portion of the dentition belonging to each one of a set of multiple categories. The category of the at least a portion of the dentition represented by the training dental model corresponds to the highest probability in the probability vector. The method includes receiving a dental model representing at least a portion of a patient's dentition and recognizing dental information associated with the dental model by applying the trained deep neural network to determine a category of the at least a portion of the patient's dentition represented by the received dental model. |