http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2020226213-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_e757fd4fedc4fe825bb81b1b466a0947
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F16-3344
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06N5-022
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06N5-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06N5-041
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F17-277
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06N20-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F40-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F16-906
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F40-284
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F16-90332
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F17-2785
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F16-93
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F16-906
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06N20-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06N5-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F16-93
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F16-9032
filingDate 2019-01-11^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_f64c5fe15dba2ec22e5a4a2a5ba82956
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3d0f737df56b6f00585446af74c58d33
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0458bde342f001301a6429e82bb5a21d
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_690d6c28bbdb55c4c658e97b3613b059
publicationDate 2020-07-16^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-2020226213-A1
titleOfInvention Dynamic Natural Language Processing
abstract Embodiments relate to an intelligent computer platform to support natural language (NL) processing. The request is analyzed and a lexical answer type (LAT) related to the received request is identified. A knowledge graph (KG) related to the LAT is identified and leveraged to extract a first concept related to the LAT and a second concept related to the first concept. First and second cluster are created, with the first cluster having the LAT and first concept as qualifiers, and the second cluster having the first and second concepts as qualifiers. Each of the formed clusters is populated with one or more documents. An inter-cluster assessment is conducted based on the relevancy of the populated document(s) to the received input. In addition, a machine learning model (MLM) corresponding to the KG is identified and utilized to selectively augment the MLM with the LAT, first and second concepts, and a corresponding relationship to the inter-cluster assessment.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2021064668-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11562029-B2
priorityDate 2019-01-11^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID424374544
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24773090

Showing number of triples: 1 to 33 of 33.