http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2022138504-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_53f347c8f604f15767e8e73fec62095a
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06N3-045
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06N3-084
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F18-2113
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F18-23
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F18-2433
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F18-22
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06N20-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F18-217
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06N20-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06K9-6218
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06K9-6262
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06K9-623
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06K9-6215
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06N20-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06K9-62
filingDate 2020-10-29^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_9006cfc2d0f0923c5ce21945ebb118c3
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0c1fd007653487052056355d7e1084e4
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ccd25c901ef12ee85f8a44c00edbf777
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_5bb38904c16defdc595cba7016ddfb1a
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d0f56c5ec89009c31e789c4949c037b2
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4dbe1314e6dda8889089f87dff1e0b37
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4daf80954001a08bf8700cfca4d3ca00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_5b8c2d20ffd8eeee1c1cd32994cffa69
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3cfea79d23c895bd054efdd3a412bb1c
publicationDate 2022-05-05^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-2022138504-A1
titleOfInvention Separation maximization technique for anomaly scores to compare anomaly detection models
abstract In an embodiment based on computer(s), an ML model is trained to detect outliers. The ML model calculates anomaly scores that include a respective anomaly score for each item in a validation dataset. The anomaly scores are automatically organized by sorting and/or clustering. Based on the organized anomaly scores, a separation is measured that indicates fitness of the ML model. In an embodiment, a computer performs two-clustering of anomaly scores into a first organization that consists of a first normal cluster of anomaly scores and a first anomaly cluster of anomaly scores. The computer performs three-clustering of the same anomaly scores into a second organization that consists of a second normal cluster of anomaly scores, a second anomaly cluster of anomaly scores, and a middle cluster of anomaly scores. A distribution difference between the first organization and the second organization is measured. An ML model is processed based on the distribution difference.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2023004857-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-115510302-A
priorityDate 2020-10-29^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415781046
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID86122

Showing number of triples: 1 to 36 of 36.