abstract |
A gradient of potential energy was established in the active layer of a III-V photocathode for enhancing free electron diffusion toward the emissive surface of the cathode. The energy gradient was provided by decreasing the bandgap energy across the active layer which caused the conduction level to slope downwards from the substrate to the emissive surface through progressive changes in the concentration of the III-V elements forming the active layer. Alternatively, a nonuniform concentration of active layer dopant-heavy on the substrate side and light on the emissive side of the active layer-established a built-in electric field across the active layer. The graded bandgap and/or dopant levels promote free electron drift toward the outer surface of the active layer. Layers of cesium, cesium oxide, or both, were provided over the active layer to lower the work function of the photocathode emissive surface. |