abstract |
A fluid treating apparatus and method are provided which employ finely subdivided surface active particles arranged in loose bed form and confined within a treating tank by means which prevent the escape of such particles but which permits fluid flow therethrough at a high rate with a minimum pressure drop. In an important embodiment, the apparatus and method of this invention are particularly directed to the treatment of water with fine mesh ion cation exchange resin particles of below 50 mesh size, and preferably 100 to 200 mesh or smaller, measured on a dry basis. This apparatus and method provides removal of polyvalent metal ions such as calcium and magnesium to soften the water and, unexpectedly, removal of chlorine, hydrogen sulfide, iron, including colloidal iron particles, bacteria and other taste and odor forming contaminants to an extent far superior than that of conventional water softening units even where such units are provided with special auxiliary treating devices such as, for example, activated carbon filters. In the described embodiment, the operation of all valves is completely hydraulic and regeneration is automatically provided when a predetermined quantity of water has been treated, however, important aspects of the present invention also find advantageous utility in fluid treating apparatus and methods wherein valve operation is manually, electromechanically, or otherwise regulated. |