abstract |
The invention consists of improved foodware with a ceramic food contacting surface, which includes cookware, cooking utensils, food serving devices, and utensils for eating food. Such ceramic-coated foodware leaches fewer ionic contaminants into food than prior art foodware. Improved toughness of ceramic coatings on foodware can be achieved via primer or topcoat layers of the tough ceramics aluminum and/or chromium nitride. Ceramic coated foodware based on a plasma-sprayed aluminum alloy substrate is also disclosed, wherein the outermost layer of the plasma spray consists of chromium or a high-chromium alloy, which serves as a substrate for application of the various PVD and CVD coatings of this invention. Ceramic foodware with improved scratch resistance and thermomechanical fatigue resistance is also disclosed, based on a wholly ceramic design, using silicon carbide, or aluminum nitride fired ceramics to form an item of foodware, with a polished food-contact surface. Such wholly ceramic foodware can also be used as a substrate for application of the other vacuum-deposited coatings of this invention to form a variety of foodware with attractive colors. Lightweight ceramic foodware with improved heat transfer properties, high strength, and excellent thermomechanical fatigue resistance, based on carbon-carbon composites, is also disclosed. Ceramic-coated foodware in which a top clear coat of silicon nitride, alumina, or diamond-like carbon is applied for decorative effect (creating a "lacquered" surface appearance) is also disclosed. |