http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6284653-B1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_57341227c065dbddd1d3cf801bbaa86a
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-28518
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-2855
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-76855
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-76843
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-76856
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-768
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-285
filingDate 2000-10-30^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2001-09-04^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_9dbcd1800923844adcd4e5dd926dfacf
publicationDate 2001-09-04^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-6284653-B1
titleOfInvention Method of selectively forming a barrier layer from a directionally deposited metal layer
abstract A process for forming a composite structure, comprised of an overlying titanium nitride barrier layer, and an underlying titanium disilicide layer, located on a portion of a conductive region in a semiconductor substrate exposed at the bottom of a high aspect ratio contact hole, has been developed. A first iteration of this invention entails the deposition of a titanium ion layer, via an anisotropic, ion metal plasma (IMP), procedure, on the exposed portion of the conductive region, as well as on the top surface of the insulator layer in which the high aspect ratio contact hole was formed in. A first anneal cycle results in the formation of a titanium disilicide layer on the conductive region, leaving an unreacted titanium ion layer on the surface of the insulator layer. After removal of unreacted titanium, a second anneal cycle is performed in a nitrogen containing ambient, converting a top portion of the titanium disilicide layer to a titanium nitride barrier layer. A tungsten plug structure is then formed on titanium nitride-titanium disilicide layer, in the high aspect ratio contact hole. A second iteration of this invention features IMP deposition of the titanium ion layer on the exposed conductive region, at the bottom of the contact hole, as well as on the top surface of the photoresist shape used for definition of the high aspect ratio contact hole. After removal of the photoresist shape, and of the titanium ion layer located on the top surface of the photoresist shape, subsequent anneal cycles are performed resulting in the desired composite, titanium nitride-titanium disilicide structure, on the conductive region.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2005250321-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-7906274-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-03034481-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2009067149-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6727165-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2008095878-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2010266965-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-8850980-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-101217118-B
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-7709376-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-7863189-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2009026626-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2009004319-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2007247608-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2009130598-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2008164573-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2009212012-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-7985530-B2
priorityDate 2000-10-30^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5552340-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5882399-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6054379-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6140241-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6025274-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5966607-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5985789-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID114942
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457707758
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559477
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419579030
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419578708
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425762086
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID222
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559362
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID1969
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID522684
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23963
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID93091
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24261
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419526467
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23964
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559479

Showing number of triples: 1 to 58 of 58.