abstract |
A diagnostic card device for use in detecting or quantitating an analyte present in a liquid sample, comprising a card substrate having a sample introduction region, a biosensor, and a sample-flow pathway communicating between the sample-introduction region and the biosensor, circuitry for generating an analyte-dependent electrical signal from the biosensor; and a signal-responsive element for recording such signal. In one embodiment, the biosensor includes a detection surface with surface-bound molecules of a first charged, coil-forming peptide capable of interacting with a second, oppositely charged coil-forming peptide to form a stable alpha-helical coiled-coil heterodimer, where the binding of the second peptide to the first peptide, to form such heterodimer, is effective to measurably alter a signal generated by the biosensor. The sample-flow pathway contains diffusibly bound conjugate of the second coil-forming peptide and the analyte (or an analyte analog) and immobilized analyte-binding agent. The analyte in the liquid sample and the conjugate compete for binding with the immobilized analyte-binding agent. Unbound conjugate migrates by capillarity to the biosensor. Liquid sample containing conjugate migrates in the sample flow pathway by capillary action or is driven by a micro-pump. In another embodiment, the biosensor includes an electrode substrate coated with a high-dielectric hydrocarbon-chain monolayer, and having analyte-binding agent attached to the exposed monolayer surface. Binding of analyte to the monolayer-bound analyte-binding agent, and the resultant perturbation of the monolayer structure, causes ion-mediated electron flow across the monolayer. |