abstract |
A magnetic resonance imaging facilitates a pre-compensating phase encoding of spuriously generated magnetizations. The method includes generating a preparatory excitation of spins represented upon an RF-excitation line, applying subsequently a temporary magnetic compensation gradient as represented along a phase-encoding axis, generating subsequently an RF excitation pulse as represented upon the RF-excitation line, applying subsequent to the RF excitation pulse, and before an acquisition interval for receiving magnetic resonance signals, a phase-encoding gradient as represented along the phase-encoding axis. The phase-encoding gradient is substantially the same magnitude as, and opposite in direction relative to, the direction of the temporary magnetic compensation gradient. The last step includes receiving magnetic resonance signals during the acquisition interval as represented along the RF-excitation line. |