abstract |
A method and apparatus for enhancing the power output and operational efficiency of a combustion turbine system using a combined refrigerant substantially comprising a first refrigerant and a second refrigerant, whereby the combined refrigerant exhibits a total pressure substantially greater than each respective first and second refrigerant at a temperature inside an evaporative chiller. In a preferred embodiment, the combined refrigerant cools turbine inlet air through the exchange of heat from the inlet air, in an air chiller, with a coolant which is cooled by the combined refrigerant in the evaporative chiller. The combined refrigerant, after it is used to cool the coolant in the evaporative chiller, is separated through the use of a liquid absorbent which absorbs the second refrigerant to form a solution pair. The non-absorbed first refrigerant is compressed, condensed and then recirculated to eventually join the second refrigerant which is desorbed from the solution pair in a regenerator. The economic advantage of the present invention is enhanced by thermally linking the heat required to regenerate the second absorptive refrigerant from the solution pair with the hot exhaust of heat available from the gas turbine. |