abstract |
A biosensor for direct analysis of nucleic acid hybridazation by use of an optical fiber functionalized with nucleic acid molecules and fluorescence transduction is disclosed. Nucleic acid probes are immobilized onto the surface of optical fibers and undergo hybridization with complementary nucleic acids introduced into the local environment of the sensor. Hybridization events are detected by the use of fluorescent compounds which bind into nucleic acid hybrids. The invention finds uses in detection and screening of genetic disorders, viruses, and pathogenic micoorganisms. Biotechnology applications include monitoring of gene cultures and gene expression and the effectiveness (e.g. dose-response) of gene therapy pharmaceuticals. The invention includes biosensor systems in which fluorescent molecules are connected to the immobilized nucleic acid molecules. The preferred method for immobilization of nucleic acids is by in situ solid phase nucleic acid synthesis. Control of the refractive index of the immobilized nucleic acid is achieved by the support derivatization chemistry and the nucleic acid synthesis. The preferred optical fiber derivation yields a DNA coating of higher refractive index than the fiber core onto the fiber surface. |