abstract |
A medical electrical lead is disclosed having an inner lumen adapted to receive a stiffening member, and which is further adapted to deliver fluoro-visible media while the stiffening member is located within the inner lumen. According to one aspect of the invention, the stiffening member is a guide wire having an inner lumen. The inner lumen of the guide wire is used to deliver the contrast medium while the guide wire is in place within the lumen of the lead. In another embodiment, a stiffening member that is sized to occupy only a portion of the lumen of the lead is utilized. The non-occupied portion of the lumen is sized to be large enough to allow for the passage of fluoro-visible medium from an injection port at the proximal end of the lead to a delivery port at the distal end of the lead. According to one aspect of the invention, the lead includes a sealable member located at the distal end of the lumen of the lead to prevent the ingress of bodily fluids within this lead lumen. The sealable member includes an opening to allow the stiffening member to be advanced outside of the lead lumen. In one embodiment, the sealable member is a flexible membrane including at least one opening to allow for passage of the stiffening member. In another embodiment, the sealable member includes multiple flap-like structures that seal around a stiffening member advanced distally of the lead body. In yet another embodiment, a sealable member is located within an electrode at the distal tip of the lead. The electrode of this configuration is provided with diametrically opposed openings to allow the electrode to expand to allow for passage of the stiffening member. The lead of the current invention may further include an inflatable member that may be inflated prior to delivery of the contrast media to prevent the media from being flushed from a vessel before a venogram is obtained. |