Predicate |
Object |
assignee |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_68c213ba9952360f439567152e047b18 |
classificationCPCAdditional |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10S977-812 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10S977-822 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10S977-762 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10S505-704 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10T428-12528 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10S977-932 |
classificationCPCInventive |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y10-00 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y30-00 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N60-0856 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N60-202 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B35-023 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B35-04 |
classificationIPCInventive |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01B35-04 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01B35-02 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L39-10 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L39-14 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L39-24 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C04B2-00 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L39-08 |
filingDate |
2009-03-27^^<http://www.w3.org/2001/XMLSchema#date> |
grantDate |
2011-02-08^^<http://www.w3.org/2001/XMLSchema#date> |
inventor |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0f304d2496bbe708d7264afcda1b9c9b http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d94be2b207475cbe09b7cf071aec9bfa |
publicationDate |
2011-02-08^^<http://www.w3.org/2001/XMLSchema#date> |
publicationNumber |
US-7884450-B2 |
titleOfInvention |
Growth of boron nanostructures with controlled diameter |
abstract |
A process for growth of boron-based nanostructures, such as nanotubes and nanowires, with a controlled diameter and with controlled chemical (such as composition, doping) as well as physical (such as electrical and superconducting) properties is described. The boron nanostructures are grown on a metal-substituted MCM-41 template with pores having a uniform pore diameter of less than approximately 4 nm, and can be doped with a Group Ia or Group IIa electron donor element during or after growth of the nanostructure. Preliminary data based on magnetic susceptibility measurements suggest that Mg-doped boron nanotubes have a superconducting transition temperature on the order of 100 K. |
priorityDate |
2003-12-11^^<http://www.w3.org/2001/XMLSchema#date> |
type |
http://data.epo.org/linked-data/def/patent/Publication |