Predicate |
Object |
assignee |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_5519d1b1bd4b2a57cccba519c852bfa2 http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_f0ed6743cca9b8d571d21f677788e448 http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_3439523a4ce78b5547fac3c7abcd09a3 |
classificationCPCAdditional |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2021-8887 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F21Y2115-10 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-6456 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E10-50 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F21Y2101-02 |
classificationCPCInventive |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L22-14 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-64 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H02S50-10 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-8851 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-6456 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-6489 |
classificationIPCAdditional |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-88 |
classificationIPCInventive |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-64 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01J3-40 |
filingDate |
2012-06-12^^<http://www.w3.org/2001/XMLSchema#date> |
grantDate |
2016-01-12^^<http://www.w3.org/2001/XMLSchema#date> |
inventor |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e7e77a731cf972ed571743c05a8161a3 http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b8ac80d4a2cc96057dbb82b8e527b112 |
publicationDate |
2016-01-12^^<http://www.w3.org/2001/XMLSchema#date> |
publicationNumber |
US-9234849-B2 |
titleOfInvention |
Method and system for inspecting indirect bandgap semiconductor structure |
abstract |
Methods ( 600 ) and systems ( 100 ) for inspecting an indirect bandgap semiconductor structure ( 140 ) are described. A light source ( 110 ) generates light ( 612 ) suitable for inducing photoluminescence in the indirect bandgap semiconductor structure ( 140 ). A short-pass filter unit ( 114 ) reduces long-wavelength light of the generated light above a specified emission peak. A collimator ( 112 ) collimates ( 616 ) the light. A large area of the indirect bandgap semiconductor structure ( 140 ) is substantially uniformly and simultaneously illuminated ( 618 ) with the collimated, short-pass filtered light. An image capture device ( 130 ) captures ( 620 ) images of photoluminescence simultaneously induced by the substantially uniform, simultaneous illumination incident across the large area for the indirect bandgap semiconductor structure. The photoluminescence images are image processed ( 622 ) to quantify spatially resolved specified electronic properties of the indirect bandgap semiconductor structure ( 140 ) using the spatial variation of the photoluminescence induced in the large area. |
isCitedBy |
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9909991-B2 http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2016116412-A1 |
priorityDate |
2005-10-11^^<http://www.w3.org/2001/XMLSchema#date> |
type |
http://data.epo.org/linked-data/def/patent/Publication |