Predicate |
Object |
assignee |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_876b677cee4aab1eda4cc56705730f47 http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_a368cc03d40c48cb5988f7be1d80c4cd http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_07f5a2b9d75c31f085dced29796c8b21 |
classificationCPCAdditional |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2030-567 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2030-3061 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C48-355 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2030-025 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N30-6069 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N30-6043 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N30-6078 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C48-05 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C48-156 |
classificationCPCInventive |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N30-56 |
classificationIPCAdditional |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B29C48-355 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B29C48-156 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B29C48-05 |
classificationIPCInventive |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B29D23-00 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N30-56 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N30-60 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N30-46 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N30-30 |
filingDate |
2009-06-01^^<http://www.w3.org/2001/XMLSchema#date> |
inventor |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_37b580b8de48d8dc7c3f7f5cbe63373a http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_512be56e2a703d4da3ea9ed449e6d99e |
publicationDate |
2009-12-17^^<http://www.w3.org/2001/XMLSchema#date> |
publicationNumber |
WO-2009149541-A1 |
titleOfInvention |
Gas chromatography capillary devices and methods |
abstract |
A multicapillary bundle for use in a gas chromatograph. Each of the capillaries in the bundle is formed using a coating solution containing a stationary phase and a solvent. The capillaries are coated with stationary phase by reducing pressure at a vacuum end of the capillary and creating a moving interface between the coating solution and a film of stationary phase deposited on each of the capillaries. The reducing pressure at the vacuum end of the capillary and the temperature of the capillary are controlled to maintain motion of the moving interface away from the vacuum end of the capillary. Maintained movement of the interface prevents recoating of the stationary phase. A heating wire and capillaries are embedded in a thermally conductive polymer to create a highly responsive method of heating the multicapillary column. An electronic control device controls the feedback temperature of the multicapillary column using the heating wire. |
isCitedBy |
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11513103-B2 http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2018141426-A1 |
priorityDate |
2008-06-12^^<http://www.w3.org/2001/XMLSchema#date> |
type |
http://data.epo.org/linked-data/def/patent/Publication |