http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2019018648-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_fffda8b59ac378c0e7cd94cdf51bbfd7
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F24S70-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G02B3-0075
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G02B19-0042
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E10-40
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E10-52
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F24S80-60
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02B10-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F24S23-12
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G02B19-0028
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F24S20-63
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G02B19-0042
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F24S20-66
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L31-0725
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L31-052
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F24S23-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L31-0549
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F24S80-56
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L31-0543
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L31-054
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L31-0232
filingDate 2018-07-19^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a41dab9a7a76b2914eaaf254ffffd15e
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_5077e71127f47f92349e3f530c5c3092
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_9faf5523102b30d2eb0a2f313ab4ade3
publicationDate 2019-01-24^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber WO-2019018648-A1
titleOfInvention INTEGRATED MICROLENSER FOR PHOTOVOLTAIC AND THERMIC CELL APPLICATIONS
abstract The invention relates to a design for a microlens (i.e., a microscale lens) incorporating existing nanofabrication techniques and capable of being incorporated into high concentration photovoltaic (HCV) systems, thermal collectors. solar and conventional flat photovoltaic systems. Using the theory of wave optics, the design is able to achieve a high numerical aperture, i.e., it can receive light over a wider range of angles. The design also reduces the distance between the focal point offsets during displacements of the light source; this eliminates the need for a tracking system in CPV photovoltaic and photovoltaic PV applications. Reducing the size of the lens also facilitates smaller and lighter photovoltaic concentrator systems, making the photovoltaic concentrator attractive for additional applications. Finally, these concentrators reduce the exchange zone of a typical flat solar thermal system where the heat is received, which improves the overall efficiency of the system and allows its use also during a severe winter weather.
priorityDate 2017-07-19^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2012227796-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20110068217-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2016115502-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-101460503-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20090040200-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2017139081-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2013019931-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3084099
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559541
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419579069
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5461123
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419522015

Showing number of triples: 1 to 43 of 43.