Predicate |
Object |
assignee |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_ffb7338f959400a6a869adcec4b4572e http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_0cb8863a0ebd9fa81e25621473a8df16 http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_465442b7d3f28d1e9a9545e62fa131ca http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_137ad4f406af5b0333fbe8694f2ed4a9 http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_2c8abd22b36e9c94090f9889ecf27cb5 |
classificationCPCAdditional |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2223-616 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N33-24 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2223-419 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2015-0846 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N23-046 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2223-649 http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2223-405 |
classificationCPCInventive |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N15-088 |
classificationIPCInventive |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N23-083 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N33-24 http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06T15-04 |
filingDate |
2018-02-02^^<http://www.w3.org/2001/XMLSchema#date> |
inventor |
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_77a859ddbc18b3ef814367baccbae7de http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d3a28f758278c989987acc6e8553da11 http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7974fa2befdcbdde7d7dfc4a2be4f929 |
publicationDate |
2019-08-08^^<http://www.w3.org/2001/XMLSchema#date> |
publicationNumber |
WO-2019151889-A1 |
titleOfInvention |
A method for determining a three-dimensional spatial distribution of porosity in a sample of a heterogeneous porous medium |
abstract |
A method for obtaining 3D spatial distribution of porosity (porosity map or porous model) inside a sample of a heterogeneous porous medium comprises obtaining a 3D microstructural image of the sample by a 3D microstructural imaging procedure and measuring a total porosity of the sample. Then, values in the obtained 3D microstructural image that correspond to fully void and fully solid voxels are determined and the obtained 3D microstructural image data is normalized using the determined values corresponding to the fully void and the fully solid voxels. Finally, a 3D spatial distribution of porosity of the sample is created by a computing device using the normalized 3D microstructural image and the measured total porosity. |
isCitedBy |
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-112115940-A |
priorityDate |
2018-02-02^^<http://www.w3.org/2001/XMLSchema#date> |
type |
http://data.epo.org/linked-data/def/patent/Publication |