http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2019151889-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_ffb7338f959400a6a869adcec4b4572e
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_0cb8863a0ebd9fa81e25621473a8df16
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_465442b7d3f28d1e9a9545e62fa131ca
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_137ad4f406af5b0333fbe8694f2ed4a9
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_2c8abd22b36e9c94090f9889ecf27cb5
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2223-616
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N33-24
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2223-419
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2015-0846
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N23-046
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2223-649
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2223-405
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N15-088
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N23-083
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N33-24
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06T15-04
filingDate 2018-02-02^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_77a859ddbc18b3ef814367baccbae7de
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d3a28f758278c989987acc6e8553da11
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7974fa2befdcbdde7d7dfc4a2be4f929
publicationDate 2019-08-08^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber WO-2019151889-A1
titleOfInvention A method for determining a three-dimensional spatial distribution of porosity in a sample of a heterogeneous porous medium
abstract A method for obtaining 3D spatial distribution of porosity (porosity map or porous model) inside a sample of a heterogeneous porous medium comprises obtaining a 3D microstructural image of the sample by a 3D microstructural imaging procedure and measuring a total porosity of the sample. Then, values in the obtained 3D microstructural image that correspond to fully void and fully solid voxels are determined and the obtained 3D microstructural image data is normalized using the determined values corresponding to the fully void and the fully solid voxels. Finally, a 3D spatial distribution of porosity of the sample is created by a computing device using the normalized 3D microstructural image and the measured total porosity.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-112115940-A
priorityDate 2018-02-02^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2011004447-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2013106508-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419556032
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451160908
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23931

Showing number of triples: 1 to 32 of 32.