http://rdf.ncbi.nlm.nih.gov/pubchem/reference/14865082

Outgoing Links

Predicate Object
contentType Journal Article
endingPage 956
issn 1741-0444
0140-0118
issueIdentifier 6
pageRange 951-956
publicationName Medical & Biological Engineering & Computing
startingPage 951
hasFundingAgency http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_fe695a5364c41afe7e7fd8a7cf1e3124
http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_487baf6554eb36bb22c6138d90a7c50f
http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_c1c4b2239c1fe2047bc2eb3481c88a0a
http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_1c0aa062611518a12552a116a65f748d
bibliographicCitation Zhu H, He G, Wang Z. Patch-based local learning method for cerebral blood flow quantification with arterial spin-labeling MRI. Medical & Biological Engineering & Computing. 2017 Nov 06;56(6):951–6. doi: 10.1007/s11517-017-1735-6.
creator http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_07c79b9e3557bff4fcd844a6bfe7decf
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_ad0ba106aa36290005db903eafaf2a31
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_0b9d384966f073eef1611d406b670ef1
date 2017-11-06^^<http://www.w3.org/2001/XMLSchema#date>
identifier https://doi.org/10.1007/s11517-017-1735-6
https://pubmed.ncbi.nlm.nih.gov/29105017
isPartOf https://portal.issn.org/resource/ISSN/1741-0444
http://rdf.ncbi.nlm.nih.gov/pubchem/journal/5586
https://portal.issn.org/resource/ISSN/0140-0118
language English
source https://pubmed.ncbi.nlm.nih.gov/
https://scigraph.springernature.com/
https://www.crossref.org/
title Patch-based local learning method for cerebral blood flow quantification with arterial spin-labeling MRI
discusses http://id.nlm.nih.gov/mesh/M0020307
hasPrimarySubjectTerm http://id.nlm.nih.gov/mesh/D001921Q000098
http://id.nlm.nih.gov/mesh/D007091Q000379
http://id.nlm.nih.gov/mesh/D002560Q000502
http://id.nlm.nih.gov/mesh/D008279Q000379
http://id.nlm.nih.gov/mesh/D001921Q000000981
hasSubjectTerm http://id.nlm.nih.gov/mesh/D060388
http://id.nlm.nih.gov/mesh/D006801
http://id.nlm.nih.gov/mesh/D013113

Showing number of triples: 1 to 36 of 36.