http://rdf.ncbi.nlm.nih.gov/pubchem/reference/16799969

Outgoing Links

Predicate Object
contentType Journal Article
endingPage 742
issn 1551-0018
issueIdentifier 3
pageRange 729-742
publicationName Mathematical biosciences and engineering : MBE
startingPage 729
bibliographicCitation Kashdan E, Bunimovich-Mendrazitsky S. Hybrid discrete-continuous model of invasive bladder cancer. Math Biosci Eng. 2013 Jun;10(3):729–42. doi: 10.3934/mbe.2013.10.729. PMID: 23906146.
creator http://rdf.ncbi.nlm.nih.gov/pubchem/author/ORCID_0000-0001-5280-3217
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_f74145edbce49fd6f1b6f92c47bec199
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_7890ebbdd2274110d46ce1eedaeec394
http://rdf.ncbi.nlm.nih.gov/pubchem/author/ORCID_0000-0002-8137-4981
date 201306
identifier https://doi.org/10.3934/mbe.2013.10.729
https://pubmed.ncbi.nlm.nih.gov/23906146
isPartOf http://rdf.ncbi.nlm.nih.gov/pubchem/journal/33312
https://portal.issn.org/resource/ISSN/1551-0018
language English
source https://pubmed.ncbi.nlm.nih.gov/
https://www.crossref.org/
title Hybrid discrete-continuous model of invasive bladder cancer
discusses http://id.nlm.nih.gov/mesh/M0029270
http://id.nlm.nih.gov/mesh/M0003416
http://id.nlm.nih.gov/mesh/M0328197
hasPrimarySubjectTerm http://id.nlm.nih.gov/mesh/D008954
http://id.nlm.nih.gov/mesh/D001749Q000473
http://id.nlm.nih.gov/mesh/D001749Q000209
hasSubjectTerm http://id.nlm.nih.gov/mesh/D019459Q000503
http://id.nlm.nih.gov/mesh/D018450
http://id.nlm.nih.gov/mesh/D009361
http://id.nlm.nih.gov/mesh/D019714Q000378
http://id.nlm.nih.gov/mesh/D006801
http://id.nlm.nih.gov/mesh/D020782Q000378
http://id.nlm.nih.gov/mesh/D002273Q000633
http://id.nlm.nih.gov/mesh/D011157
http://id.nlm.nih.gov/mesh/D019459Q000473
http://id.nlm.nih.gov/mesh/D055641
http://id.nlm.nih.gov/mesh/D049490
http://id.nlm.nih.gov/mesh/D001749Q000503
discussesAsDerivedByTextMining http://rdf.ncbi.nlm.nih.gov/pubchem/disease/DZID8607
http://rdf.ncbi.nlm.nih.gov/pubchem/disease/DZID8603
http://rdf.ncbi.nlm.nih.gov/pubchem/disease/DZID7053

Showing number of triples: 1 to 42 of 42.