http://rdf.ncbi.nlm.nih.gov/pubchem/reference/28455740

Outgoing Links

Predicate Object
contentType Journal Article
issn 1746-4811
issueIdentifier 1
pageRange 34-
publicationName Plant Methods
startingPage 34
hasFundingAgency http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_89f5fd9a960d481378ba545da1230b36
http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_da9ad82bd834fe3e7c8f46c85790acb4
http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_6b669abb338e8988c5afc2d186a57905
http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_dd9815efaf83485d759c940d4bc723fb
http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_2beb19b4457db77c331577c2509e2b56
http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_d7c2963b5f54bdf25557d0d988b83b22
bibliographicCitation Zhang J, Zhang W, Xiong S, Song Z, Tian W, Shi L, Ma X. Comparison of new hyperspectral index and machine learning models for prediction of winter wheat leaf water content. Plant Methods. 2021 Mar 30;17(1):34. PMID: 33789711; PMCID: PMC8011113.
creator http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_53d6abcadb3b8d76988f48ae82f1c3ce
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_5ff5c593de93ad0cd445bc2fd9446fb7
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_bd8f13a1a960b7d75ae86323d4f86f9f
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_30267016987e2ee6077b1a332c96ba32
http://rdf.ncbi.nlm.nih.gov/pubchem/author/ORCID_0000-0001-8460-1601
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_292e5cbad3a5f94cd91c9ca51d150bed
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_2e8eb96536093d948085eb743909a098
date 2021-03-31^^<http://www.w3.org/2001/XMLSchema#date>
identifier https://pubmed.ncbi.nlm.nih.gov/PMC8011113
https://pubmed.ncbi.nlm.nih.gov/33789711
https://doi.org/10.1186/s13007-021-00737-2
isPartOf https://portal.issn.org/resource/ISSN/1746-4811
http://rdf.ncbi.nlm.nih.gov/pubchem/journal/32399
language English
source https://scigraph.springernature.com/
https://www.crossref.org/
https://pubmed.ncbi.nlm.nih.gov/
title Comparison of new hyperspectral index and machine learning models for prediction of winter wheat leaf water content

Showing number of triples: 1 to 31 of 31.