http://rdf.ncbi.nlm.nih.gov/pubchem/reference/29136357

Outgoing Links

Predicate Object
contentType Journal Article
issn 2150-5551
2311-6706
issueIdentifier 1
pageRange 181-
publicationName Nano-Micro Letters
startingPage 181
bibliographicCitation Zheng B, Gu GX. Machine Learning-Based Detection of Graphene Defects with Atomic Precision. Nano-Micro Letters. 2020 Sep 07;12(1):181. doi: 10.1007/s40820-020-00519-w.
creator http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_5612414f8121d3462430ae8870db1e05
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_10d730c5180b4b0e6094b2c60f8bf74e
date 2020-09-07^^<http://www.w3.org/2001/XMLSchema#date>
identifier https://doi.org/10.1007/s40820-020-00519-w
https://pubmed.ncbi.nlm.nih.gov/PMC7770819
https://pubmed.ncbi.nlm.nih.gov/34138207
isPartOf http://rdf.ncbi.nlm.nih.gov/pubchem/journal/47611
https://portal.issn.org/resource/ISSN/2311-6706
https://portal.issn.org/resource/ISSN/2150-5551
language English
source https://scigraph.springernature.com/
https://www.crossref.org/
https://pubmed.ncbi.nlm.nih.gov/
title Machine Learning-Based Detection of Graphene Defects with Atomic Precision

Showing number of triples: 1 to 22 of 22.