http://rdf.ncbi.nlm.nih.gov/pubchem/reference/33988302

Outgoing Links

Predicate Object
contentType Journal Article
issn 1746-4811
issueIdentifier 1
pageRange 81-
publicationName Plant Methods
startingPage 81
hasFundingAgency http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_a512f83d6d078e74615d8d4c9a3ae396
http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_c1510e32e6a93d9e99d040c0b554946b
bibliographicCitation Tu K, Wen S, Cheng Y, Xu Y, Pan T, Hou H, Gu R, Wang J, Wang F, Sun Q. A model for genuineness detection in genetically and phenotypically similar maize variety seeds based on hyperspectral imaging and machine learning. Plant Methods. 2022 Jun 11;18(1):81. PMID: 35690826; PMCID: PMC9188178.
creator http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_fd9101a360465dfe88ede70cb2093e51
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_72c7a0fd0d9b1c5d7d9c95bee5b05a28
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_356c0c428255ad5b8fcef4f2a623f3f4
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_4bcc3aec08d35ef09f45ef481a4fa65a
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_02ef246905eb2e1262cd184b960f896d
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_395f334ae3bcad6af96e13631a290937
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_9a6a095102db10c71e376f40eef8497f
http://rdf.ncbi.nlm.nih.gov/pubchem/author/ORCID_0000-0002-6880-0560
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_414a4dbce3504560f16a6be319929851
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_f1499b5cbae21c20b1825d9a8b53ac5c
date 2022-06-11^^<http://www.w3.org/2001/XMLSchema#date>
identifier https://pubmed.ncbi.nlm.nih.gov/35690826
https://pubmed.ncbi.nlm.nih.gov/PMC9188178
https://doi.org/10.1186/s13007-022-00918-7
isPartOf https://portal.issn.org/resource/ISSN/1746-4811
http://rdf.ncbi.nlm.nih.gov/pubchem/journal/32399
language English
source https://scigraph.springernature.com/
https://www.crossref.org/
https://pubmed.ncbi.nlm.nih.gov/
title A model for genuineness detection in genetically and phenotypically similar maize variety seeds based on hyperspectral imaging and machine learning

Showing number of triples: 1 to 30 of 30.