Predicate |
Object |
contentType |
Review|Journal Article |
issn |
0049-089X |
pageRange |
102784- |
publicationName |
Social Science Research |
startingPage |
102784 |
bibliographicCitation |
Macanovic A. Text mining for social science - The state and the future of computational text analysis in sociology. Soc Sci Res. 2022 Nov;108():102784. doi: 10.1016/j.ssresearch.2022.102784. PMID: 36334929. |
creator |
http://rdf.ncbi.nlm.nih.gov/pubchem/author/ORCID_0000-0003-0800-5271 |
date |
202211 |
identifier |
https://doi.org/10.1016/j.ssresearch.2022.102784 https://pubmed.ncbi.nlm.nih.gov/36334929 |
isPartOf |
http://rdf.ncbi.nlm.nih.gov/pubchem/journal/20467 https://portal.issn.org/resource/ISSN/0049-089X |
language |
English |
source |
https://pubmed.ncbi.nlm.nih.gov/ https://www.crossref.org/ |
title |
Text mining for social science – The state and the future of computational text analysis in sociology |
hasPrimarySubjectTerm |
http://id.nlm.nih.gov/mesh/D007802 http://id.nlm.nih.gov/mesh/D057225Q000379 |
hasSubjectTerm |
http://id.nlm.nih.gov/mesh/D006801 http://id.nlm.nih.gov/mesh/D012961 http://id.nlm.nih.gov/mesh/D012942 |