http://rdf.ncbi.nlm.nih.gov/pubchem/reference/34684955

Outgoing Links

Predicate Object
contentType Review|Journal Article
issn 0049-089X
pageRange 102784-
publicationName Social Science Research
startingPage 102784
bibliographicCitation Macanovic A. Text mining for social science - The state and the future of computational text analysis in sociology. Soc Sci Res. 2022 Nov;108():102784. doi: 10.1016/j.ssresearch.2022.102784. PMID: 36334929.
creator http://rdf.ncbi.nlm.nih.gov/pubchem/author/ORCID_0000-0003-0800-5271
date 202211
identifier https://doi.org/10.1016/j.ssresearch.2022.102784
https://pubmed.ncbi.nlm.nih.gov/36334929
isPartOf http://rdf.ncbi.nlm.nih.gov/pubchem/journal/20467
https://portal.issn.org/resource/ISSN/0049-089X
language English
source https://pubmed.ncbi.nlm.nih.gov/
https://www.crossref.org/
title Text mining for social science – The state and the future of computational text analysis in sociology
hasPrimarySubjectTerm http://id.nlm.nih.gov/mesh/D007802
http://id.nlm.nih.gov/mesh/D057225Q000379
hasSubjectTerm http://id.nlm.nih.gov/mesh/D006801
http://id.nlm.nih.gov/mesh/D012961
http://id.nlm.nih.gov/mesh/D012942

Showing number of triples: 1 to 21 of 21.