http://rdf.ncbi.nlm.nih.gov/pubchem/reference/35382944

Outgoing Links

Predicate Object
contentType Journal Article
endingPage 2069
issn 2041-6539
2041-6520
issueIdentifier 8
pageRange 2054-2069
publicationName Chemical Science
startingPage 2054
hasFundingAgency http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_c1c4b2239c1fe2047bc2eb3481c88a0a
http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_274a87fdd2d7d6aaba9a3774c9e5d285
http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_a71960533e57bbfecb38e66869a95032
http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_487baf6554eb36bb22c6138d90a7c50f
bibliographicCitation Jiang D, Ye Z, Hsieh CY, Yang Z, Zhang X, Kang Y, Du H, Wu Z, Wang J, Zeng Y, Zhang H, Wang X, Wang M, Yao X, Zhang S, Wu J, Hou T. MetalProGNet: a structure-based deep graph model for metalloprotein-ligand interaction predictions. Chem Sci. 2023 Feb 22;14(8):2054–69. PMID: 36845922; PMCID: PMC9945430.
creator http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_68cc29fb7c535602fc84a830c594ae78
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_29a7cca76b3463c5568fa9e6ad8a9a6d
http://rdf.ncbi.nlm.nih.gov/pubchem/author/ORCID_0000-0002-0999-8802
http://rdf.ncbi.nlm.nih.gov/pubchem/author/ORCID_0000-0002-8118-8572
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_939edf8d5872f9140022c44cd2517b05
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_e311caf6b048f14a4c30fc89b3d95654
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_60b38b6841d7775fba86fd63c0a98911
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_a0ad025e86d8e46441f20500f5ccbda4
http://rdf.ncbi.nlm.nih.gov/pubchem/author/ORCID_0000-0002-6972-2971
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_63e5878bdb7de177e687fb3440770f23
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_0e3f4feb861e66900773a77a696f8e56
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_250285d360aed5513fc11b7237c2a427
http://rdf.ncbi.nlm.nih.gov/pubchem/author/ORCID_0000-0001-7227-2580
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_a4780f93812c2fbe4e319c077cce5327
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_5dfe90c41e3f434aed06f9d8d9587646
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_bd674e5fa85d62371258d827e1a4c70d
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_1bde3c59b8ca291a8339abedb7fb6743
date 2023-02-22^^<http://www.w3.org/2001/XMLSchema#date>
identifier https://pubmed.ncbi.nlm.nih.gov/36845922
https://doi.org/10.1039/d2sc06576b
https://pubmed.ncbi.nlm.nih.gov/PMC9945430
isPartOf https://portal.issn.org/resource/ISSN/2041-6539
https://portal.issn.org/resource/ISSN/2041-6520
http://rdf.ncbi.nlm.nih.gov/pubchem/journal/38564
language English
source https://www.crossref.org/
https://pubmed.ncbi.nlm.nih.gov/
title MetalProGNet: a structure-based deep graph model for metalloprotein–ligand interaction predictions
discussesAsDerivedByTextMining http://rdf.ncbi.nlm.nih.gov/pubchem/disease/DZID10395
http://rdf.ncbi.nlm.nih.gov/pubchem/disease/DZID9765
http://rdf.ncbi.nlm.nih.gov/pubchem/disease/DZID8173
http://rdf.ncbi.nlm.nih.gov/pubchem/disease/DZID8607

Showing number of triples: 1 to 45 of 45.