http://rdf.ncbi.nlm.nih.gov/pubchem/reference/4021242

Outgoing Links

Predicate Object
contentType Journal Article
issn 1099-4300
issueIdentifier 7
pageRange 707-
publicationName Entropy (Basel, Switzerland)
startingPage 707
bibliographicCitation Duan J, Tian X, Ma W, Qiu X, Wang P, An L. Electricity Consumption Forecasting using Support Vector Regression with the Mixture Maximum Correntropy Criterion. Entropy (Basel). 2019 Jul 19;21(7). PMID: 33267421; PMCID: PMC7515222.
creator http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_4897b2c90fb93002e10248e77feca8bb
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_ac4c17cb8fb4f6231b54657c8a6e05ac
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_dc3660315f9a98e8f6287a45951c7c5e
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_a8f690995390e2724c84034e733d929a
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_f26ac9c5ce1d6262035d5617215611b8
http://rdf.ncbi.nlm.nih.gov/pubchem/author/ORCID_0000-0002-2781-1693
date 2019-07-19^^<http://www.w3.org/2001/XMLSchema#date>
identifier https://doi.org/10.3390/e21070707
https://pubmed.ncbi.nlm.nih.gov/33267421
https://pubmed.ncbi.nlm.nih.gov/PMC7515222
isPartOf https://portal.issn.org/resource/ISSN/1099-4300
http://rdf.ncbi.nlm.nih.gov/pubchem/journal/36201
language English
source https://www.crossref.org/
https://pubmed.ncbi.nlm.nih.gov/
title Electricity Consumption Forecasting using Support Vector Regression with the Mixture Maximum Correntropy Criterion

Showing number of triples: 1 to 23 of 23.