http://rdf.ncbi.nlm.nih.gov/pubchem/reference/6131810

Outgoing Links

Predicate Object
contentType Journal Article|Research Support, Non-U.S. Gov't
endingPage 662
issn 1367-4811
1367-4803
issueIdentifier 3
pageRange 655-662
publicationName Bioinformatics (Oxford, England)
startingPage 655
hasFundingAgency http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_b6ba7b45d4175c9be91d883514bc4509
http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_487baf6554eb36bb22c6138d90a7c50f
http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_1c0aa062611518a12552a116a65f748d
http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_ef9cfa541454b186bc61664fdae00f1d
http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_0c21611b8eb598b5073a8282586e13be
http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_c0faacb6354ced772865ea66aea4bc1a
http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_6655586123c3d14198009b14c4ffc578
http://rdf.ncbi.nlm.nih.gov/pubchem/organization/MD5_11386d84d73baefb90cb05a392e4d2c2
bibliographicCitation Zhao Q, Zhao H, Zheng K, Wang J. HyperAttentionDTI: improving drug-protein interaction prediction by sequence-based deep learning with attention mechanism. Bioinformatics. 2022 Jan 12;38(3):655–62. doi: 10.1093/bioinformatics/btab715. PMID: 34664614.
creator http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_93d85386c5a085c7aaca02a519b9e619
http://rdf.ncbi.nlm.nih.gov/pubchem/author/ORCID_0000-0003-1516-0480
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_24dcc92d4458b4bb2c15347f4a956c31
http://rdf.ncbi.nlm.nih.gov/pubchem/author/ORCID_0000-0002-8319-9793
date 2021-10-19^^<http://www.w3.org/2001/XMLSchema#date>
identifier https://pubmed.ncbi.nlm.nih.gov/34664614
https://doi.org/10.1093/bioinformatics/btab715
isPartOf https://portal.issn.org/resource/ISSN/1367-4803
https://portal.issn.org/resource/ISSN/1367-4811
http://rdf.ncbi.nlm.nih.gov/pubchem/journal/20940
language English
source https://pubmed.ncbi.nlm.nih.gov/
https://www.crossref.org/
title HyperAttentionDTI: improving drug–protein interaction prediction by sequence-based deep learning with attention mechanism
discusses http://id.nlm.nih.gov/mesh/M0000922
http://id.nlm.nih.gov/mesh/M0017890
hasPrimarySubjectTerm http://id.nlm.nih.gov/mesh/D000077321
hasSubjectTerm http://id.nlm.nih.gov/mesh/D016571
http://id.nlm.nih.gov/mesh/D011506Q000737
http://id.nlm.nih.gov/mesh/D006801
http://id.nlm.nih.gov/mesh/D000596
http://id.nlm.nih.gov/mesh/D055808Q000379

Showing number of triples: 1 to 39 of 39.