An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In logic a branching quantifier, also called a Henkin quantifier, finite partially ordered quantifier or even nonlinear quantifier, is a partial ordering of quantifiers for Q ∈ {∀,∃}. It is a special case of generalized quantifier. In classical logic, quantifier prefixes are linearly ordered such that the value of a variable ym bound by a quantifier Qm depends on the value of the variables y1, ..., ym−1 bound by quantifiers Qy1, ..., Qym−1 preceding Qm. In a logic with (finite) partially ordered quantification this is not in general the case.

Property Value
dbo:abstract
  • In logic a branching quantifier, also called a Henkin quantifier, finite partially ordered quantifier or even nonlinear quantifier, is a partial ordering of quantifiers for Q ∈ {∀,∃}. It is a special case of generalized quantifier. In classical logic, quantifier prefixes are linearly ordered such that the value of a variable ym bound by a quantifier Qm depends on the value of the variables y1, ..., ym−1 bound by quantifiers Qy1, ..., Qym−1 preceding Qm. In a logic with (finite) partially ordered quantification this is not in general the case. Branching quantification first appeared in a 1959 conference paper of Leon Henkin. Systems of partially ordered quantification are intermediate in strength between first-order logic and second-order logic. They are being used as a basis for Hintikka's and Gabriel Sandu's independence-friendly logic. (en)
  • Kwantyfikator rozgałęziony (inaczej kwantyfikator Henkina) – zbiór częściowo uporządkowany gdzie dla W rachunku predykatów prefiks kwantyfikatorowy jest liniowym porządkiem, tzn. w formule wartość zmiennej wiązanej przez kwantyfikator zależy od wartości zmiennych wiązanych przez kwantyfikatory W formule z kwantyfikatorem rozgałęzionym może być inaczej. (pl)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3573834 (xsd:integer)
dbo:wikiPageLength
  • 9105 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1072050994 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Kwantyfikator rozgałęziony (inaczej kwantyfikator Henkina) – zbiór częściowo uporządkowany gdzie dla W rachunku predykatów prefiks kwantyfikatorowy jest liniowym porządkiem, tzn. w formule wartość zmiennej wiązanej przez kwantyfikator zależy od wartości zmiennych wiązanych przez kwantyfikatory W formule z kwantyfikatorem rozgałęzionym może być inaczej. (pl)
  • In logic a branching quantifier, also called a Henkin quantifier, finite partially ordered quantifier or even nonlinear quantifier, is a partial ordering of quantifiers for Q ∈ {∀,∃}. It is a special case of generalized quantifier. In classical logic, quantifier prefixes are linearly ordered such that the value of a variable ym bound by a quantifier Qm depends on the value of the variables y1, ..., ym−1 bound by quantifiers Qy1, ..., Qym−1 preceding Qm. In a logic with (finite) partially ordered quantification this is not in general the case. (en)
rdfs:label
  • Branching quantifier (en)
  • Kwantyfikator rozgałęziony (pl)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License