About: Graph kernel

An Entity of Type: disease, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In structure mining, a graph kernel is a kernel function that computes an inner product on graphs. Graph kernels can be intuitively understood as functions measuring the similarity of pairs of graphs. They allow kernelized learning algorithms such as support vector machines to work directly on graphs, without having to do feature extraction to transform them to fixed-length, real-valued feature vectors. They find applications in bioinformatics, in chemoinformatics (as a type of molecule kernels), and in social network analysis.

Property Value
dbo:abstract
  • In structure mining, a graph kernel is a kernel function that computes an inner product on graphs. Graph kernels can be intuitively understood as functions measuring the similarity of pairs of graphs. They allow kernelized learning algorithms such as support vector machines to work directly on graphs, without having to do feature extraction to transform them to fixed-length, real-valued feature vectors. They find applications in bioinformatics, in chemoinformatics (as a type of molecule kernels), and in social network analysis. Concepts of graph kernels have been around since the 1999, when D. Haussler introduced convolutional kernels on discrete structures. The term graph kernels was more officially coined in 2002 by R. I. Kondor and J. Laffertyas kernels on graphs, i.e. similarity functions between the nodes of a single graph, with the World Wide Web hyperlink graph as a suggested application. In 2003, Gaertner et al.and Kashima et al.defined kernels between graphs. In 2010, Vishwanathan et al. gave their unified framework. In 2018, Ghosh et al. described the history of graph kernels and their evolution over two decades. (en)
  • Jądro grafu – podzbiór wierzchołków grafu skierowanego taki, że: * wierzchołki z jądra nie przewyższają się nawzajem (nie posiadają następników) * każdy wierzchołek grafu nie należący do jądra jest przewyższany przez co najmniej jeden wierzchołek z jądra. Każdy wierzchołek izolowany w grafie należy jednocześnie do jądra. (pl)
dbo:wikiPageID
  • 39419087 (xsd:integer)
dbo:wikiPageLength
  • 5494 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1092188906 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdf:type
rdfs:comment
  • Jądro grafu – podzbiór wierzchołków grafu skierowanego taki, że: * wierzchołki z jądra nie przewyższają się nawzajem (nie posiadają następników) * każdy wierzchołek grafu nie należący do jądra jest przewyższany przez co najmniej jeden wierzchołek z jądra. Każdy wierzchołek izolowany w grafie należy jednocześnie do jądra. (pl)
  • In structure mining, a graph kernel is a kernel function that computes an inner product on graphs. Graph kernels can be intuitively understood as functions measuring the similarity of pairs of graphs. They allow kernelized learning algorithms such as support vector machines to work directly on graphs, without having to do feature extraction to transform them to fixed-length, real-valued feature vectors. They find applications in bioinformatics, in chemoinformatics (as a type of molecule kernels), and in social network analysis. (en)
rdfs:label
  • Graph kernel (en)
  • Jądro grafu (pl)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License