dbo:abstract
|
- In mathematical logic and computer science, the lambda-mu calculus is an extension of the lambda calculus introduced by M. Parigot. It introduces two new operators: the μ operator (which is completely different both from the μ operator found in computability theory and from the μ operator of modal μ-calculus) and the bracket operator. Proof-theoretically, it provides a well-behaved formulation of classical natural deduction. One of the main goals of this extended calculus is to be able to describe expressions corresponding to theorems in classical logic. According to the Curry–Howard isomorphism, lambda calculus on its own can express theorems in intuitionistic logic only, and several classical logical theorems can't be written at all. However with these new operators one is able to write terms that have the type of, for example, Peirce's law. Semantically these operators correspond to continuations, found in some functional programming languages. (en)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 3638 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dct:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- In mathematical logic and computer science, the lambda-mu calculus is an extension of the lambda calculus introduced by M. Parigot. It introduces two new operators: the μ operator (which is completely different both from the μ operator found in computability theory and from the μ operator of modal μ-calculus) and the bracket operator. Proof-theoretically, it provides a well-behaved formulation of classical natural deduction. Semantically these operators correspond to continuations, found in some functional programming languages. (en)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |