An Entity of Type: SquareMatrix108268085, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a P-multimagic cube is a magic cube that remains magic even if all its numbers are replaced by their k th powers for 1 ≤ k ≤ P. 2-multimagic cubes are called bimagic, 3-multimagic cubes are called trimagic, and 4-multimagic cubes tetramagic. A P-multimagic cube is said to be semi-perfect if the k th power cubes are perfect for 1 ≤ k < P, and the P th power cube is semiperfect. If all P of the power cubes are perfect, the P-multimagic cube is said to be perfect.

Property Value
dbo:abstract
  • En mathématiques, un cube p-multimagique est un cube magique qui reste magique même si tous les nombres sont remplacés par leur k-ième puissance pour . Ainsi, un cube magique est bimagique ssi il est 2-multimagique, et trimagique ssi il est 3-multimagique. * Portail des mathématiques (fr)
  • In mathematics, a P-multimagic cube is a magic cube that remains magic even if all its numbers are replaced by their k th powers for 1 ≤ k ≤ P. 2-multimagic cubes are called bimagic, 3-multimagic cubes are called trimagic, and 4-multimagic cubes tetramagic. A P-multimagic cube is said to be semi-perfect if the k th power cubes are perfect for 1 ≤ k < P, and the P th power cube is semiperfect. If all P of the power cubes are perfect, the P-multimagic cube is said to be perfect. The first known example of a bimagic cube was given by John Hendricks in 2000; it is a semiperfect cube of order 25 and magic constant 195325. In 2003, C. Bower discovered two semi-perfect bimagic cubes of order 16, and a perfect bimagic cube of order 32. MathWorld reports that only two trimagic cubes are known, discovered by C. Bower in 2003; a semiperfect cube of order 64 and a perfect cube of order 256. It also reports that he discovered the only two known tetramagic cubes, a semiperfect cube of order 1024, and perfect cube of order 8192. (en)
  • In matematica, un cubo P-multimagico è un cubo magico che rimane magico anche quando tutti i numeri di cui è composto vengono elevati ad una potenza k, dove 1 ≤ k ≤ P. Pertanto, un cubo magico è bimagico se e solo se è 2-multimagico, trimagico se e solo se è 3-multimagico. (it)
dbo:wikiPageID
  • 372397 (xsd:integer)
dbo:wikiPageLength
  • 1788 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1070307942 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • En mathématiques, un cube p-multimagique est un cube magique qui reste magique même si tous les nombres sont remplacés par leur k-ième puissance pour . Ainsi, un cube magique est bimagique ssi il est 2-multimagique, et trimagique ssi il est 3-multimagique. * Portail des mathématiques (fr)
  • In matematica, un cubo P-multimagico è un cubo magico che rimane magico anche quando tutti i numeri di cui è composto vengono elevati ad una potenza k, dove 1 ≤ k ≤ P. Pertanto, un cubo magico è bimagico se e solo se è 2-multimagico, trimagico se e solo se è 3-multimagico. (it)
  • In mathematics, a P-multimagic cube is a magic cube that remains magic even if all its numbers are replaced by their k th powers for 1 ≤ k ≤ P. 2-multimagic cubes are called bimagic, 3-multimagic cubes are called trimagic, and 4-multimagic cubes tetramagic. A P-multimagic cube is said to be semi-perfect if the k th power cubes are perfect for 1 ≤ k < P, and the P th power cube is semiperfect. If all P of the power cubes are perfect, the P-multimagic cube is said to be perfect. (en)
rdfs:label
  • Cubo multimagico (it)
  • Cube multimagique (fr)
  • Multimagic cube (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License