An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Łukasiewicz–Moisil algebras (LMn algebras) were introduced in the 1940s by Grigore Moisil (initially under the name of Łukasiewicz algebras) in the hope of giving algebraic semantics for the n-valued Łukasiewicz logic. However, in 1956 Alan Rose discovered that for n ≥ 5, the Łukasiewicz–Moisil algebra does not model the Łukasiewicz logic. A faithful model for the ℵ0-valued (infinitely-many-valued) Łukasiewicz–Tarski logic was provided by C. C. Chang's MV-algebra, introduced in 1958. For the axiomatically more complicated (finite) n-valued Łukasiewicz logics, suitable algebras were published in 1977 by and called MVn-algebras. MVn-algebras are a subclass of LMn-algebras, and the inclusion is strict for n ≥ 5. In 1982 published some additional constraints that added to LMn-algebras produc

Property Value
dbo:abstract
  • Łukasiewicz–Moisil algebras (LMn algebras) were introduced in the 1940s by Grigore Moisil (initially under the name of Łukasiewicz algebras) in the hope of giving algebraic semantics for the n-valued Łukasiewicz logic. However, in 1956 Alan Rose discovered that for n ≥ 5, the Łukasiewicz–Moisil algebra does not model the Łukasiewicz logic. A faithful model for the ℵ0-valued (infinitely-many-valued) Łukasiewicz–Tarski logic was provided by C. C. Chang's MV-algebra, introduced in 1958. For the axiomatically more complicated (finite) n-valued Łukasiewicz logics, suitable algebras were published in 1977 by and called MVn-algebras. MVn-algebras are a subclass of LMn-algebras, and the inclusion is strict for n ≥ 5. In 1982 published some additional constraints that added to LMn-algebras produce proper models for n-valued Łukasiewicz logic; Cignoli called his discovery proper Łukasiewicz algebras. Moisil however, published in 1964 a logic to match his algebra (in the general n ≥ 5 case), now called Moisil logic. After coming in contact with Zadeh's fuzzy logic, in 1968 Moisil also introduced an infinitely-many-valued logic variant and its corresponding LMθ algebras. Although the Łukasiewicz implication cannot be defined in a LMn algebra for n ≥ 5, the Heyting implication can be, i.e. LMn algebras are Heyting algebras; as a result, Moisil logics can also be developed (from a purely logical standpoint) in the framework of Brower’s intuitionistic logic. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 43613625 (xsd:integer)
dbo:wikiPageLength
  • 8862 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1110774003 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Łukasiewicz–Moisil algebras (LMn algebras) were introduced in the 1940s by Grigore Moisil (initially under the name of Łukasiewicz algebras) in the hope of giving algebraic semantics for the n-valued Łukasiewicz logic. However, in 1956 Alan Rose discovered that for n ≥ 5, the Łukasiewicz–Moisil algebra does not model the Łukasiewicz logic. A faithful model for the ℵ0-valued (infinitely-many-valued) Łukasiewicz–Tarski logic was provided by C. C. Chang's MV-algebra, introduced in 1958. For the axiomatically more complicated (finite) n-valued Łukasiewicz logics, suitable algebras were published in 1977 by and called MVn-algebras. MVn-algebras are a subclass of LMn-algebras, and the inclusion is strict for n ≥ 5. In 1982 published some additional constraints that added to LMn-algebras produc (en)
rdfs:label
  • Łukasiewicz–Moisil algebra (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License