Meine Homepage f ( k ) = { 1 wenn ∑ m = 1 d m < d k k C m ≤ d k 0 sonst {\displaystyle f(k)={\begin{cases}1&{\text{wenn }}\sum \limits _{m=1 \atop d_{m}<d_{k}}^{k}C_{m}\leq d_{k}\\0&{\text{sonst }}\end{cases}}}
L ( l , r , d ) = 1 N ∑ i | l i − r i | d i {\displaystyle L(l,r,d)={\frac {1}{N}}\sum _{i}{\frac {|l_{i}-r_{i}|}{d_{i}}}}
L m a x ( l , r , d ) = m a x i ( | l i − r i | d i ) {\displaystyle L_{max}(l,r,d)=max_{i}\left({\frac {|l_{i}-r_{i}|}{d_{i}}}\right)}
R ( l , r , d ) = 2 ∗ ∑ l i − r i > 0 | l i − r i | d i ∑ i | l i − r i | d i − 1 {\displaystyle R(l,r,d)=2*{\frac {\sum \limits _{l_{i}-r_{i}>0}{\frac {|l_{i}-r_{i}|}{d_{i}}}}{\sum \limits _{i}{\frac {|l_{i}-r_{i}|}{d_{i}}}}}-1}
x 2 4 + x 3 − 11 = 0 {\displaystyle {\frac {x^{2}}{4}}+{\frac {x}{3}}-11=0} x 2 + x ∗ 4 3 − 44 = 0 {\displaystyle x^{2}+x*{\frac {4}{3}}-44=0}