计算机科学 ›› 2020, Vol. 47 ›› Issue (3): 292-297.doi: 10.11896/jsjkx.190200379

• 信息安全 • 上一篇    下一篇

内部威胁检测中用户属性画像方法与应用

钟雅1,郭渊博1,刘春辉2,李涛1   

  1. (信息工程大学密码工程学院 郑州450001)1;
    (中国人民解放军61213部队 山西 临汾041000)2
  • 收稿日期:2019-02-28 出版日期:2020-03-15 发布日期:2020-03-30
  • 通讯作者: 郭渊博([email protected])
  • 基金资助:
    国家自然科学基金(61501515)

User Attributes Profiling Method and Application in Insider Threat Detection

ZHONG Ya1,GUO Yuan-bo1,LIU Chun-hui2,LI Tao1   

  1. (Cryptography Engineering Institute, Information Engineering University, Zhengzhou 450001, China)1;
    (Unit 61213 of The Chinese People’s Liberation Army, Linfen, Shanxi 041000, China)2
  • Received:2019-02-28 Online:2020-03-15 Published:2020-03-30
  • About author:ZHONG Ya,born in 1995,postgra-duate.Her main research interests include insider threat detection and anomaly detection. GUO Yuan-bo,born in 1975,Ph.D,professor,is member of China Computer Federation.His main research interests include network attack and defense confrontation.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (61501515).

摘要: 随着信息技术与互联网技术在企业组织中的广泛应用,企业安全面临着前所未有的挑战。大多数企业既面临着企业外部的攻击,也面临着内部人员的内部攻击。由于缺乏及时有效的检测手段,内部攻击对企业和组织造成的损害在一定程度上比外部攻击更加严重。在组织和企业内部,“人”是实施破坏行为的主体,是内部威胁检测中的主要研究对象。针对现有内部威胁检测中对内部员工完全隔离监管方法的相似威胁检测关联性低、检测效率低等问题,文中把研究重点从发现诱因转移到相似用户的聚类和监管上,以组织内的用户作为研究主体,提出了内部威胁检测中用户属性画像方法。该方法首先定义了画像相似度计算方法;然后,从用户性格、人格、过往经历、工作状态、遭遇的挫折等多方面着手,利用本体理论、标签式画像方法将多因素整合;最后,通过改进的K-Means算法实现用户聚类与分组管理,实现了潜在恶意用户共同监管的目的,减少了相似破坏多次发生的可能性。实验结果证明了所提方法的可行性,其为组织预防内部威胁提供了思路和方法。

关键词: K-Means, 内部威胁, 企业安全, 群组管理, 相似度计算, 用户画像

Abstract: With the widely use of information technology and Internet technology in enterprise organizations,enterprise information security faces unprecedented challenges.Most companies are faced with both external and internal attacks.Due to the lack of timely and effective detection methods,the damage caused by internal attacks is more serious.As the conductor of malicious behaviors in organization and enterprise,human is the research object in insider threat detection.Aiming at the low correlation and low detection efficiency of the similar threat detection for the existing insider threat detection method,user attributes profiling method was proposed.In this paper,users in the organization were taken as the research subject,and the clustering and supervision of similar users were mainly studied.Firstly,the method of calculating the similarity of portraits is defined.Then,the ontology theory and tabular portrait method were used to integrate multiple factors,such as user personality,personality,past expe-rience,working status,and setbacks.Similar users are clustered and managed in group by improved K-Means method,achieving the purpose of joint supervision on potential malicious ones,which reduces the possibility of similar damage occurring.Experimental results show that the proposed method is feasible and makes a way to combat the insider threat.

Key words: Enterprise security, Group management, Insider threat, K-Means, Similarity calculation, User profiling

中图分类号: 

  • TP391
[1]BISHOP M,GATES C.Defining the insider threat[C]∥Proceedings of the Cyber Security & Information Intelligence Research Workshop.2008.
[2]PATZAKIS J.New incident response best practices:Patch and proceed is no longer acceptable incident response [J].Guidance Software,Pasadena,CA,Tech.Rep,2003(9):97-105.
[3]WARKENTIN M,WILLISON R,JOHNSTON A C.The Role of Perceptions of Organizational Injustice and Techniques of Neutralization in Forming Computer Abuse Intentions[C]∥AMCIS 2011.Detroit,Michigan,USA:DBLP,2011.
[4]PREDD J,PFLEEGER S L,HUNKER J,et al.Insiders behaving badly [J].IEEE Security & Privacy,2008,6(4):66-70.
[5]CSO Magazine,U.S.Secret Service,CERT Division of the Software Engineering Institute,et al.2015 U.S.state of cybercrime survey [OL].https://www.pwc.com/us/en/increasing-it-effectiveness/publications/assets/2015-us-cybercrime-survey.pdf.
[6]Verizon.2018 Data Breach Investigations Report [OL].ht- tps://www.verizonenterprise.com/resources/reports/rp_DBIR_2018_Report_execsummary_en_xg.pdf.2018.
[7]Dtex Systems.2018 insider threat intelligence report[OL].https://www.dtexsystems.com/2018-insider-threat-intelligence-report.2018.
[8]LEGG P A,BUCKLEY O,GOLDSMITH M,et al. Automated insider threat detection system using user and role-based profile assessment[J].IEEE Systems Journal,2017,11(2):503-512.
[9]GAMACHCHI A,SUN L,BOZTAS S.A Graph Based Framework for Malicious Insider Threat Detection[J].arXiv:1089.00141,2017.
[10]NURSE J R C,BUCKLEY O,LEGG P A,et al.Understanding insider threat:A framework for characterising attacks[C]∥IEEE Security and Privacy Workshops.ACM,2014:214-228.
[11]LIANG N.Characteristics of Malicious Insiders and Their Rela- tionships with Different Types of Malicious Attacks[D].Stillwater:Oklahoma State University,2017.
[12]GUO Y B,LIU C H,KONG J,et al.Research on User Behavior Patterns Profiling in InsiderThreat Detection [J].Journal of China Institute of Communications,2018,39(12):145-154.
[13]ABBESH,BOUKETTAYA S,GARGOURI F.Learning ontology from Big Data through MongoDB database[C]∥Computer Systems & Applications.IEEE,2016.
[14]QIU R C,ANTONIK P.The Mathematical Foundations of Data Collection[M]∥Smart Grid using Big Data Analytics:A Random Matrix Theory Approach.2017.
[15]JIA W Y.Research on personalized recommendation algorithm of agriculture information based on group users’portrait[D].Xianyang:Northwest A&F University.2017.
[16]ZHANG Z P,TIAN S X,LIU H Q.Compositive Approach for Ontology Similarity Computation[J].Computer Science,2008,35(12):142-145.
[17]SHI B,FANG L,YAN J,et al.Ontology-Based Measure of Semantic Similarity between Concepts[C]∥IEEE Computer Society.Xiamen,2009:109-112.
[18]US-CERT.Insider Threat Tools[EB/OL].http://www.cert. org/insider-threat/tools/index.cfm,2014-10-20.
[19]LUO Y G,LI X,JIANG T H,et al.Uyghur Lexicon Normalization Method Based on Word Vector[J].Computer Engineering,2018(2):220-225.
[1] 吴子仪, 李邵梅, 姜梦函, 张建朋.
基于自注意力模型的本体对齐方法
Ontology Alignment Method Based on Self-attention
计算机科学, 2022, 49(9): 215-220. https://doi.org/10.11896/jsjkx.210700190
[2] 王毅, 李政浩, 陈星.
基于用户场景的Android 应用服务推荐方法
Recommendation of Android Application Services via User Scenarios
计算机科学, 2022, 49(6A): 267-271. https://doi.org/10.11896/jsjkx.210700123
[3] 王省, 康昭.
基于光滑表示的半监督分类算法
Smooth Representation-based Semi-supervised Classification
计算机科学, 2021, 48(3): 124-129. https://doi.org/10.11896/jsjkx.200700078
[4] 陈迎仁, 郭莹楠, 郭享, 倪一涛, 陈星.
基于特征相似度计算的网页包装器自适应
Web Page Wrapper Adaptation Based on Feature Similarity Calculation
计算机科学, 2021, 48(11A): 218-224. https://doi.org/10.11896/jsjkx.210100230
[5] 徐守坤, 倪楚涵, 吉晨晨, 李宁.
基于YOLOv3的施工场景安全帽佩戴的图像描述
Image Caption of Safety Helmets Wearing in Construction Scene Based on YOLOv3
计算机科学, 2020, 47(8): 233-240. https://doi.org/10.11896/jsjkx.190600109
[6] 束云峰, 王中卿.
基于专利结构的中文专利摘要研究
Research on Chinese Patent Summarization Based on Patented Structure
计算机科学, 2020, 47(6A): 45-48. https://doi.org/10.11896/JsJkx.190500028
[7] 潘恒, 李景峰, 马君虎.
可抵御内部威胁的角色动态调整算法
Role Dynamic Adjustment Algorithm for Resisting Insider Threat
计算机科学, 2020, 47(5): 313-318. https://doi.org/10.11896/jsjkx.190800051
[8] 焦扬, 杨传颖, 石宝.
基于SVM相关反馈的鞋印图像检索算法
Relevance Feedback Method Based on SVM in Shoeprint Images Retrieval
计算机科学, 2020, 47(11A): 244-247. https://doi.org/10.11896/jsjkx.200400032
[9] 许飞翔,叶霞,李琳琳,曹军博,王馨.
基于SA-BP算法的本体概念语义相似度综合计算
Comprehensive Calculation of Semantic Similarity of Ontology Concept Based on SA-BP Algorithm
计算机科学, 2020, 47(1): 199-204. https://doi.org/10.11896/jsjkx.181202351
[10] 文俊浩,万园,曾骏,王喜宾,梁冠中.
光照度聚类和支持向量机在路灯节能控制策略中的应用
Application of Illumination Clustering and SVM in Energy-saving Control Strategy of Street Lamps
计算机科学, 2019, 46(7): 327-332. https://doi.org/10.11896/j.issn.1002-137X.2019.07.050
[11] 蒋华,武尧,王鑫,王慧娇.
改进K均值聚类的海洋数据异常检测算法研究
Study on Ocean Data Anomaly Detection Algorithm Based on Improved K-means Clustering
计算机科学, 2019, 46(7): 211-216. https://doi.org/10.11896/j.issn.1002-137X.2019.07.032
[12] 刘长齐, 邵堃, 霍星, 范冬阳, 檀结庆.
基于加权质量评价函数的K-means图像分割算法
K-means Image Segmentation Algorithm Based on Weighted Quality Evaluation Function
计算机科学, 2019, 46(6A): 158-160.
[13] 侯媛媛, 何儒汉, 李敏, 陈佳.
结合卷积神经网络多层特征融合和K-Means聚类的服装图像检索方法
Clothing Image Retrieval Method Combining Convolutional Neural Network Multi-layerFeature Fusion and K-Means Clustering
计算机科学, 2019, 46(6A): 215-221.
[14] 黄海燕, 刘晓明, 孙华勇, 杨志才.
聚类分析算法在不确定性决策中的应用
Application of Clustering Analysis Algorithm in Uncertainty Decision Making
计算机科学, 2019, 46(6A): 593-597.
[15] 万家山, 陈蕾, 吴锦华, 高超.
基于KD-Tree聚类的社交用户画像建模
Persona Based Social User Modeling Using KD-Tree
计算机科学, 2019, 46(6A): 442-445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!